Boundary Element Methods

Első borító
Springer Science & Business Media, 2010. nov. 1. - 561 oldal
This work presents a thorough treatment of boundary element methods (BEM) for solving strongly elliptic boundary integral equations obtained from boundary reduction of elliptic boundary value problems in $\mathbb{R}^3$. The book is self-contained, the prerequisites on elliptic partial differential and integral equations being presented in Chapters 2 and 3. The main focus is on the development, analysis, and implementation of Galerkin boundary element methods, which is one of the most flexible and robust numerical discretization methods for integral equations. For the efficient realization of the Galerkin BEM, it is essential to replace time-consuming steps in the numerical solution process with fast algorithms. In Chapters 5-9 these methods are developed, analyzed, and formulated in an algorithmic way.
 

Mit mondanak mások - Írjon ismertetőt

Nem találtunk ismertetőket a szokott helyeken.

Tartalomjegyzék

Introduction
1
Elliptic Differential Equations
20
Elliptic Boundary Integral Equations
101
Boundary Element Methods
183
Generating the Matrix Coefficients
288
Solution of Linear Systems of Equations
353
Cluster Methods
403
pParametric Surface Approximation
467
A Posteriori Error Estimation
517
References
545
Index of Symbols
555
Index
559
Copyright

Más kiadások - Összes megtekintése

Gyakori szavak és kifejezések

A szerzőről (2010)

Prof. Dr. rer. nat. Stefan Sauter Born in 1964, Heidelberg, Germany. Studies of mathematics and physics at the University of Heidelberg (1985-1990). Scientific assistant at the University of Kiel (PhD 1993). 1993/94 PostDoc at the University of College Park. Until 1998, senior assistant at the University of Kiel (Habilitation 1998). Chair in Mathematics at the University of Leipzig (1998/99). Since 1999 Ordinarius in Mathematics at the Universität Zürich. Prof. Christoph Schwab, PhD Born in 1962, Flörsheim, Germany. Studies of mathematics, mechanics, and aerospace engineering in Darmstadt and College Park, Maryland, USA (1982-1989). PhD in Applied Mathematics, University of Maryland, College Park 1989. Postdoctoral fellow (1990/91) University of Westminster, London, UK. Assistant professor (1991-1994) and associate professor (1995) of Mathematics, University of Maryland, Baltimore County, USA. Extraordinarius (1995-1998) and Ordinarius (1998-) for mathematics at the ETH Zürich. The authors were organizing various conferences and minisymposia on fast boundary element methods, e.g., at Oberwolfach, MAFELAP conferences at Brunel UK, Zurich Summer Schools, and were speakers on these topics at numerous international conferences.

Bibliográfiai információk