Oldalképek
PDF
ePub

Reyher in 1669, in his Dissertation already quoted. In Germany they are made chiefly by Nuremberg artists; one of the most celebrated of whom was Michael Sigismund Hack. He learnt the art of glass-blowing in England, and in 1672 returned to Nuremberg, where he was born in 1643'.

FIRE-ENGINES.

THE invention of pumps I shall leave to those who undertake to write the history of hydraulics, and here only remark that, on the testimony of Vitruvius, it is in general ascribed to Ctesibius, on which account they are called machine Ctesibice; and that Ctesibius lived at Alexandria in the time of Ptolemy Philadelphus and Ptolemy Euergetes I., consequently two centuries before the Christian æra. My present object extends no further than to state what I know in regard to the question, At what time were these machines first employed for extinguishing fires?

For this purpose, however, it was necessary that the pumpwork employed at first only for raising water should undergo some alteration. To use it for extinguishing fires, it was requisite that the water should be speedily driven from the upper aperture as high as possible; whereas for the first purpose, it is enough if the water be thrown out in sufficient quantity to be conveyed to the place of its destination. More additional parts necessary for extinguishing fires would then be an imperfection; as the power which gives the water a needless velocity might be employed with more advantage to raise a greater quantity of it.

In my opinion it is highly probable that Ctesibius had an idea of converting his pump into a fire-engine, for his scholar, Hero of Alexandria, speaks expressly of this use, and describes the construction of a forcing-pump with two cylinders; but it is very doubtful whether this application of it

1 Doppelmayer, p. 276.

2 Lib. x. cap. 12, p. 347. Compare lib. ix. cap. 9, p. 321.

3 In that book entitled Пvevμarià, or Spiritualia. It may be found

soon became general, and whether this advantageous machine was known to the ancient Romans. What I have been able to learn on the subject is as follows.

Pliny the younger, after telling the emperor Trajan, in one of his letters, that the town of Nicomedia in Bithynia had been almost entirely destroyed by a fire, adds, that the devastation had been increased by a violent storm which took place at the time; by the laziness of the inhabitants, and by the want of machines or apparatus proper for extinguishing the flames'. The word sipho, which the author here uses, was certainly the fire-engine of Ctesibius; though some under this term understand only aqueducts, canals, and pipes for distributing water throughout the city. I will not deny that this word may have signified such pipes, particularly on account of a passage in Strabo, where he speaks of the subterranean conduits of Rome, and says that almost all the houses had cisterns, siphones, or water-pipes, and running streams. But Pliny at the same time mentions water-buckets, which may be considered as an appendage absolutely necessary to a fire-engine. It is also hardly possible to believe that a town, immediately situated on an arm of the sea, should be destitute of waters.

I can however produce from a contemporary writer, a strong proof that Pliny alluded here to a fire-engine, and I do not find that the passage has been before quoted. Apollodorus, the architect, who was employed by the emperor Trajan in constructing the celebrated bridge over the Danube, and erecting some large works at Rome, and who was put to death by his successor Adrian, out of revenge for a jeering answer which he received from him, as we are told by Dio Cassius, describes in the fragment of his book on warlike machines, how assistance may be given when the upper part of a building is on fire, and the machine called sipho is not at hand. In this case leathern bags filled with water are to be fastened to long pipes in such a manner, that by pressing the bags the water may be forced through the pipes to the place which is in flames. The sipho, therefore, was a ma

Greek and Latin in Veterum Mathematicorum Opera, Parisiis 1693, fol. p. 180. Epist. 42, lib. x. 2 Lib. v. edit. Almel. p. 360.

1

Plin. lib. v. cap. ult. ✦ Poliorcetica, p. 32, in Veterum Mathematicorum Opera.

chine by which water might be easily projected to a considerable height, to extinguish a place on fire that could not be reached by any other means.

That in the fourth century at least a fire-engine, properly so called, was understood under the term sipho, is fully proved by Hesychius, and also by Isidorus, who lived in the beginning of the seventh century1. As the latter remarks that such engines were employed in the East for extinguishing fires, there is reason to conclude that they were not then used in the west.

The question still remains, at what time this apparatus for extinguishing fires was introduced at Rome. From the numerous ordinances for preventing accidents by fire, and in regard to extinguishing fires, which occur in the Roman laws, there is reason to conjecture that this capital was not unprovided with those useful implements and machines, of the want of which in a provincial town Pliny complains, and which he himself had supplied. This conjecture, however, I am not able to prove; and instances both in ancient and modern times show that the good police establishments of small towns are not always to be found in capitals. Antioch and several other towns were provided with lanterns, which were wanting even in the proud Rome. But what excites some doubt is, that fire-engines are never mentioned in the numerous accounts given of the tires which took place in that city. At present it is impossible to speak of a misfortune of this kind without stating whether a sufficient number of engines were assembled, and what they effected, as Pliny has not failed to do in his short account of the fire at Nicomedia.

One passage, however, in Ulpian is commonly quoted as a proof that in his time there were fire-engines at Rome. Where he enumerates those things which ought to belong to

Orig. xx. 6. Fire-engines are used in many towns to wash the windows in the upper stories, which cannot be taken out.

2 See Digest. i. tit. 15, where all persons are ordered to have water always ready in their houses. Also Digest. 47, tit. 9. Many things relating to this subject may be found in L. A. Hambergeri Opuscula, Jenæ et Lips. 1740, 8vo, p. 12; in the Dissertation de Incendiis. Further information respecting the police establishment of the Romans in regard to fires, is contained in two dissertations, entitled G. C. Marquarti de Cura Romanorum circa Incendia. Lips. 1689, 4to. And Ev. Ottonis Dissertat de Officio Præfecti Vigilum circa Incendia. Ultrajecti 1733.

a house when sold, he mentions, besides other articles used for extinguishing fires, siphones'. But if this word means here fire-engines, the passage seems to prove too much; for it must then be admitted that each house had a fire-engine of its own. These implements therefore must have been small hand-engines, such as are kept in many houses at present; and in that case the passage cannot be adduced as a proof of public engines, such as Pliny regrets the want of at Nicomedia. But it is much more probable that Ulpian alludes only to those siphones which, according to the account of Strabo, were to be found in every house at Rome; that is, pipes which conveyed water to it for domestic purposes.

From the total want of fire-engines, or the imperfect manner in which they were constructed, what Seneca says must have been true, namely, that the height of the houses at Rome rendered it impossible to extinguish them when on fire. That the buildings there were exceedingly high, and the lanes, the bridges and even the principal streets remarkably narrow, is well-known3. It is supposed by Archenholz and others, that the houses at Rome were built of such a height on account of the great heat in that warm climate; but the chief reason was undoubtedly that assigned by Vitruvius, which still produces a like effect. For want of room on the earth, the buildings were extended towards the heavens; so that at last the greatest height of an edifice was fixed by law at seventy, and afterwards at sixty feet. In Hamburg, at present, where ground is dear and daily becoming more valuable, the greater part of the houses are little less than sixty feet in height; a few even are seventy; and that it is thereby rendered difficult, if not impossible, notwithstanding the perfection of the German engines, to extinguish fires, is proved by the melancholy instance of Gera, where the houses are now built lower. With Neubert's engine, which was tried at Hamburg in 1769, eight firemen threw eleven and a half

1 Digest. xxxiii. 7, 18. Dier. Genial. v. 24. 2 Controvers. 9, libri ii. 3 In Germany also the roads and the distance between the ruts made by cart-wheels were in old times very narrow. Some years ago, when the new tile-kiln was built before the Geismar gate at Göttingen, there was found at a great depth, a proof of is antiquity, a street or road which had formerly proceeded to the city with so small a space marked out by carriage-wheels, that one like it is not to be seen in Germany.

4 Lib. ii. cap. 8.

cubic feet of water to the height of sixty-two or sixty-three feet.

In the East engines were employed not only to extinguish but to produce fires. The Greek fire, invented by Callini us, an architect of Heliopolis, a city afterwards named Balbec, in the year 678, the use of which was continued in the East till 1291', and which was certainly liquid, was employed in many different ways; but chiefly on board ship, being thrown. from large fire-engines on the ships of the enemy. Sometimes this fire was kindled in particular vessels, which might be called fire-ships, and which were introduced among a hostile fleet; sometimes it was put into jars and other vessels, which were thrown at the enemy by means of projectile machines3, and sometimes it was squirted by the soldiers from hand-engines; or, as appears, blown through pipes. But the machines with which this fire was discharged from the forepart of ships, could not have been either hand-engines or such blow-pipes. They were constructed of copper and iron, and the extremity of them sometimes resembled the open mouth and jaws of a lion or other animal; they were painted and even gilded, and it appears that they were capable of projecting the fire to a great distance1. These machines by ancient writers are expressly called spouting-engines. John Cameniata, speaking of the siege of his native city, Thessalonica, which was taken by the Saracens in the year 904, says that the enemy threw fire into the wooden works of the besieged, which was blown into them by means of tubes, and thrown from other vessels. This passage, which I do not find quoted in any of the works that treat on the Greek fire, proves that the Greeks in the beginning of the tenth century were no longer the only people acquainted with the art of preparing this fire, the precursor of our gunpowder. The emperor Leo, who about the same period wrote his art of war, recommends such engines, with a metal covering, to be constructed in the fore-part of ships, and he twice afterwards

1 Hanovii Disquisitiones. Gedani 1750, 4to, p. 65.

2 Annæ Comnenæ Alexiad. lib. 16. p. 385; πup vypóv.

3 A projectile machine of this kind is mentioned by Joinville, p. 39.

4 See the passage of Anna Comnena quoted by Hanov. p. 335.

5 In Leonis Allatii Euμμikra. Colon. 1653, 8vo, p. 239.

Cap. 19, § 6, p. 322.

« ElőzőTovább »