Hamiltonian Systems with Three or More Degrees of Freedom

Első borító
Carles Simó
Springer Science & Business Media, 1999. jún. 30. - 658 oldal
A survey of current knowledge about Hamiltonian systems with three or more degrees of freedom and related topics. The Hamiltonian systems appearing in most of the applications are non-integrable. Hence methods to prove non-integrability results are presented and the different meaning attributed to non-integrability are discussed. For systems near an integrable one, it can be shown that, under suitable conditions, some parts of the integrable structure, most of the invariant tori, survive. Many of the papers discuss near-integrable systems.
From a topological point of view, some singularities must appear in different problems, either caustics, geodesics, moving wavefronts, etc. This is also related to singularities in the projections of invariant objects, and can be used as a signature of these objects. Hyperbolic dynamics appear as a source on unpredictable behaviour and several mechanisms of hyperbolicity are presented. The destruction of tori leads to Aubrey-Mather objects, and this is touched on for a related class of systems. Examples without periodic orbits are constructed, against a classical conjecture.
Other topics concern higher dimensional systems, either finite (networks and localised vibrations on them) or infinite, like the quasiperiodic Schrödinger operator or nonlinear hyperbolic PDE displaying quasiperiodic solutions.
Most of the applications presented concern celestial mechanics problems, like the asteroid problem, the design of spacecraft orbits, and methods to compute periodic solutions.
 

Mit mondanak mások - Írjon ismertetőt

Nem találtunk ismertetőket a szokott helyeken.

Tartalomjegyzék

II
3
III
11
IV
13
V
26
VI
39
VII
55
VIII
62
IX
72
LIII
426
LIV
430
LV
435
LVI
440
LVII
444
LVIII
449
LIX
453
LX
458

X
90
XI
115
XII
126
XIII
127
XIV
134
XV
151
XVI
168
XVII
184
XVIII
193
XIX
213
XX
223
XXI
242
XXII
244
XXIII
254
XXIV
270
XXV
283
XXVI
285
XXVII
290
XXVIII
295
XXIX
300
XXX
305
XXXI
310
XXXII
314
XXXIII
318
XXXIV
324
XXXV
330
XXXVI
335
XXXVII
340
XXXVIII
345
XXXIX
350
XL
357
XLI
362
XLII
367
XLIII
372
XLIV
377
XLV
386
XLVI
391
XLVII
398
XLVIII
403
XLIX
408
L
413
LI
418
LII
422
LXI
471
LXII
475
LXIII
480
LXIV
485
LXV
489
LXVI
494
LXVII
499
LXVIII
504
LXIX
509
LXX
514
LXXI
518
LXXII
523
LXXIII
528
LXXIV
533
LXXV
538
LXXVI
544
LXXVII
549
LXXVIII
554
LXXIX
558
LXXX
563
LXXXI
568
LXXXII
573
LXXXIII
578
LXXXIV
583
LXXXV
588
LXXXVI
592
LXXXVII
595
LXXXVIII
600
LXXXIX
605
XC
610
XCI
614
XCII
618
XCIII
625
XCIV
628
XCV
633
XCVI
638
XCVII
642
XCVIII
646
XCIX
649
C
654
CI
655
Copyright

Más kiadások - Összes megtekintése

Gyakori szavak és kifejezések

Bibliográfiai információk