Oldalképek
PDF
ePub

greatest extension these orbs produce collectively the diffused light which forms the Milky Way.

Sir John Herschel, applying a similar series of researches to the southern heavens, was led to a very similar conclusion. His view of the sidereal system differs chiefly in this respect from his father's, that he considered the stars within certain limits of distance from the sun to be spread less richly through space than those whose united lustre produces the milky light of the galaxy.

Now it is clear that if the supposition on which these views are based is just, the three following results are to be looked for.

In the first place the stars visible to the naked eye would be distributed with a certain general uniformity over the celestial sphere; so that if on the contrary we find certain extensive regions over which such stars are strewn much more richly than over the rest of the heavens, we must abandon Sir Wm. Herschel's fundamental hypothesis and all the conclusions which have been based upon it.

In the second place, we ought to find no signs of the aggregation of lucid stars into streams or clustering groups. If we should find such associated groups we must abandon the hypothesis of uniform distribution and all the conclusions founded on it.

Thirdly, and most obviously of all, the lucid stars ought not to be associated in a marked manner with the figure of the Milky Way. To take an illustrative instance. When we look through a glass window at a distant landscape we do not find that the specks in the substance of the glass seem to follow the outline of valleys, hills, trees, or whatever features the landscape may present. In like manner, regarding the sphere of the lucid stars as in a sense the window through which we view the Milky Way, we ought not to find these stars, which are so near to us, associated with the figure of the Milky Way, whose light comes from distances so enormously exceeding those which separate us from the lucid stars. Here again, then, if there should appear signs of such association, we must abandon the theory that the sidereal system is constituted as Sir Wm. Herschel supposed.

It should further be remarked that the three arguments derived from these relations are independent of each other. They are not as three links of a chain, any one of which being broken the chain is broken. They are as three strands of a triple cord. If one strand holds, the cord holds. It may be shown that all three are to be trusted.

It is not to be expected, however, that the stars as actually seen should exhibit these relations, since far the larger number are but faintly visible; so that the eye would look in vain for the signs of law among them, even though law may be there. What is necessary is that maps should be constructed on a uniform and intelligible plan, and that in these maps the faint stars should be made bright, and the bright stars brighter.

The maps exhibited during this discourse have been devised for this purpose amongst others. There are twelve of them, but they overlap, so that in effect each covers a tenth part of the heavens. There is

first a north-polar map, then five maps symmetrically placed around it; again, there is a south-polar map, and five maps symmetrically placed round that map; and these five so fit in with the first five as to complete the enclosure of the whole sphere. In effect every map of the twelve has five maps symmetrically placed around it and overlapping it.* Since the whole heavens contain but 5932 stars visible to the naked eye, each of the maps should contain on the average about 593 stars. But instead of this being the case, some of the maps contain many more than their just proportion of stars, while in others the number as greatly falls short of the average. One recognizes, by combining these indications, the existence of a roughly circular region, rich in stars, in the northern heavens, and of another, larger and richer, in the southern hemisphere.

To show the influence of these rich regions, it is only necessary to exhibit the numerical relations presented by the maps.

The north-polar map, in which the largest part of the northern rich region falls, contains no less than 693 lucid stars, of which upwards of 400 fall within the half corresponding to the rich region. Of the adjacent maps, two contain upwards of 500 stars, while the remaining three contain about 400 each. Passing to the southern hemisphere, we find that the south-polar map, which falls wholly within a rich region, contains no less than 1132 stars! One of the adjacent maps contains 834 stars, and the four others exhibit numbers ranging from 527 to 595.

It is wholly impossible not to recognize so unequal a distribution as exhibiting the existence of special laws of stellar aggregation.

It is noteworthy, too, that the greater Magellanic cloud falls in the heart of the southern rich region. Were there not other signs that this wonderful object is really associated with the sidereal system it might be rash to recognize this relation as indicating the existence of a physical connection between the Nubecula Major and the southern region rich in stars. Astronomers have indeed so long regarded the Nubeculæ as belonging neither to the sidereal nor to the nebular systems, that they are not likely to recognize very readily the existence of any such connection. Yet how strangely perverse is the reasoning which has led astronomers so to regard these amazing objects. Presented fairly, that evidence amounts simply to this: The Magellanic clouds contain stars and they contain nebulæ; therefore they are neither nebular nor stellar. Can perversity of reasoning be pushed farther? Is not the obvious conclusion this, that since nebulæ and stars are seen to be intermixed in the Nubeculæ, the nebular and stellar systems form in reality but one complex system.

As to the existence of star-streams and clustering aggregations, we have also evidence of a decisive character.† There is a well

* It will be understood that the description here, and all which immediately follows, replaces portions of the discourse which would only be intelligible when illustrated by means of the diagrams and illuminated maps actually employed. + Here, again, without the illustrative maps the argument is necessarily rendered imperfect.

VOL. VI. (No. 53.)

L

marked stream of stars running from near Capella towards Monoceros. Beyond this lies a long dark rift altogether bare of lucid orbs, beyond which again lies an extensive range of stars, covering Gemini, Cancer, and the southern parts of Leo. This vast system of stars resembles a gigantic sidereal billow flowing towards the Milky Way as towards some mighty shore-line. Nor is this description altogether fanciful; since one of the most marked instances of star-drift presently to be adduced refers to this very region. These associated stars are urging their way towards the galaxy, and that at a rate which, though seemingly slow when viewed from beyond so enormous a gap as separates us from this system, must in reality be estimated by millions of miles in every year.

Other streams and clustering aggregations there are which need not here be specially described. But it is worth noticing that all the well-marked streams recognized by the ancients seem closely associated with the southern rich region already referred to. This is true of the stars forming the River Eridanus, the serpent Hydra, and the streams from the water-can of Aquarius. It is also noteworthy that in each instance a portion of the stream lies outside the rich region, the rest within it; while all the streams which lie on the same side of the galaxy tend towards the two Magellanic clouds.

Most intimate signs of association between lucid stars and the galaxy can be recognized,—(i.) in the part extending from Cygnus to Aquila; (ii.) in the part from Perseus to Monoceros; (iii.) over the ship Argo; and (iv.) near Crux and the feet of Centaurus.

Before proceeding to the subject of Star-drift, three broad facts may be stated. They are, I believe, now recognized for the first time, and seem decisive of the existence of special laws of distribution among the stars :—

First, the rich southern region, though covering but a sixth part of the heavens, contains one-third of all the lucid stars, leaving only two-thirds for the remaining five-sixths of the heavens.

Secondly, if the two rich regions and the Milky Way be considered as one part of the heavens, the rest as another, then the former part is three times as richly strewn with lucid stars as the second.

Thirdly, the southern hemisphere contains one thousand more lucid stars than the northern, a fact which cannot but be regarded as most striking when it is remembered that the total number of lucid stars in both hemispheres falls short of 6000.

Two or three years ago, the idea suggested itself to me that if the proper motions of the stars were examined, they would be found to convey clear information respecting the existence of variety of structure, and special laws of distribution within the sidereal system.

In the first place the mere amount of a star's apparent motion must be regarded as affording a means of estimating the star's distance. The nearer a moving object is, the faster it will seem to move,

and vice versa. Of course in individual instances little reliance can be placed on this indication; but by taking the average proper motions of a set of stars, no untrustworthy measure may be obtained of their average distance, as compared with the average distance of another set.

For example, we have in this process the means of settling the question whether the apparent brightness of a star is indeed a test of relative nearness. According to accepted theories the sixth-magnitude stars are ten or twelve times as far off as those of the first magnitude. Hence their motions should, on the average, be correspondingly small. Now, to make assurance doubly sure, I divided the stars into two sets, the first including the stars of the 1st, 2nd, and 3rd, the second including those of the 4th, 5th, and 6th magnitude. According to accepted views, the average proper motion for the first set should be about five times as great as that for the second. I was prepared to find it about three times as great; that is, not so much greater as the accepted theories require, but still considerably greater. To my surprise I found that the average proper motion of the brighter orders of stars is barely equal to that of the three lower orders.

This proves beyond all possibility of question that by far the greater number of the fainter orders of stars (I refer here throughout to lucid stars) owe their faintness not to vastness of distance, but to real relative minuteness.

To pass over a number of other modes of research, the actual mapping of the stellar motions, and the discovery of the peculiarity to which I have given the name of star-drift, remains to be considered.

In catalogues it is not easy to recognize any instances of community of motion which may exist among the stars, owing to the method in which the stars are arranged. What is wanted in this case (as in many others which yet remain to be dealt with) is the adoption of a plan by which such relations may be rendered obvious to the eye. The plan I adopted was to attach to each star in my maps a small arrow, indicating the amount and direction of that star's apparent motion in 36,000 years (the time-interval being purposely lengthened, as otherwise most of the arrows would have been too small to be recognized). When this was done, several well-mårked instances of community of motion could immediately be recognized.

It is necessary to premise, however, that before the experiment was tried, there were reasons for feeling very doubtful whether it would succeed. A system of stars might really be drifting athwart the heavens, and yet the drift might be rendered unrecognizable through the intermixture of more distant or nearer systems having motions of another sort, and seen accidentally in the same general direction.

This was found to be the case, indeed, in several instances. Thus the stars in the constellation Ursa Major, and neighbouring stars in Draco, exhibit two well-marked directions of drift. The stars B, y, d, e, and g of the Great Bear, besides two companions of the lastnamed star, are travelling in one direction, with equal velocity, and clearly form one system. The remaining stars in the neighbourhood

But even

are travelling in a direction almost exactly the reverse. this relation, thus recognized in a region of diverse motions, is full of interest. Baron Mädler, the celebrated German astronomer, recognizing the community of motion between Ursæ and its companions, calculated the cyclic revolution of the system to be certainly not less than 7000 years. But when the complete system of stars showing this motion is considered, we get a cyclic period so enormous, that not only the life of man, but the life of the human race, the existence of our earth, nay, even the existence of the solar system, must be regarded as a mere day in comparison with that amazing cycle.

Then there are other instances of star-drift where, though two directions of motion are not intermixed, the drift character of the motion is not at once recognized, because of the various distances at which the associated stars lie from the eye.

A case of this kind is to be met with in the stars forming the constellation Taurus. It was here that Mädler recognized a community of motion among the stars, but he did not interpret this as I do. He had formed the idea that the whole of the sidereal system must be in motion around some central point; and for reasons which need not here be touched on, he was led to believe that in whatever direction the centre of motion may lie, the stars seen in that general direction would exhibit a community of motion. Then, that he might not have to examine the proper motions all over the heavens, he inquired in what direction (in all probability) the centre of motion may be supposed to lie. Coming to the conclusion that it must be towards Taurus, he examined the proper motions in that constellation, and found a community of motion which led him to regard Alcyone, the chief star of the Pleiades, as the centre around which the sidereal system is moving. Had he examined farther he would have found more marked instances of community of motion in other parts of the heavens, a circumstance which would have at once compelled him to abandon his hypothesis of a central sun in the Pleiades, or at least to lay no stress on the evidence derivable from the community of motion in Taurus.

Perhaps the most remarkable instance of star-drift is that observed in the constellations Gemini and Cancer. Here the stars seem to set bodily towards the neighbouring part of the Milky Way. The general drift in that direction is too marked, and affects too many stars, to be regarded as by any possibility referable to accidental coincidence.

It is worthy of note that if the community of star-drift should be recognized (or I prefer to say, when it is recognized), astronomers will have the means of determining the relative distances of the stars of a drifting system. For differences in the apparent direction and amount of motion can be due but to differences of distance and position, and the determination of these differences becomes merely a question of perspective.*

*Here no account is taken of the motions of the stars within the system; such motions must be minute compared with the common motion of the system.

« ElőzőTovább »