Oldalképek
PDF
ePub

name, and being so far similar to Induction properly so called, that the propositions they lead to are really general propositions. For example, when we have proved with respect to the circle, that a straight line can not meet it in more than two points, and when the same thing has been successively proved of the ellipse, the parabola, and the hyperbola, it may be laid down as a universal property of the sections of the cone. The distinction drawn in the two previous examples can have no place here, there being no difference between all known sections of the cone and all sections, since a cone demonstrably can not be intersected by a plane except in one of these four lines. It would be difficult, therefore, to refuse to the proposition arrived at, the name of a generalization, since there is no room for any generalization beyond it. But there is no induction, because there is no inference the conclusion is a mere summing up of what was asserted in the various propositions from which it is drawn. A case somewhat, though not altogether, similar, is the proof of a geometrical theorem by means of a diagram. Whether the diagram be on paper or only in the imagination, the demonstration (as formerly observed) does not prove directly the general theorem; it proves only that the conclusion, which the theorem asserts generally, is true of the particular triangle or circle exhibited in the diagram; but since we perceive that in the same way in which we have proved it of that circle, it might also be proved of any other circle, we gather up

:

into one general expression all the singular propositions susceptible of being thus proved, and embody them in a universal proposition. Having shown that the three angles of the triangle ABC are together equal to two right angles, we conclude that this is true of every other triangle, not because it is true of ABC, but for the same reason which proved it to be true of ABC. If this were to be called Induction, an appropriate name for it would be, induction by parity of reasoning. But the term can not properly belong to it; the characteristic quality of Induction is wanting, since the truth obtained, though really general, is not believed on the evidence of particular instances. We do not conclude that all triangles have the property because some triangles have, but from the ulterior demonstrative evidence which was the ground of our conviction in the particular instances.

There are nevertheless, in mathematics, some examples of so-called Induction, in which the conclusion does bear the appearance of a generalization grounded on some of the particular cases included in it. A mathematician, when he has calculated a sufficient number of the terms of an algebraical or arithmetical series to have ascertained what is called the law of the series, does not hesitate to fill up any number of the succeeding terms without repeating the calculations. But I apprehend he only does so when it is apparent from a priori considerations (which might be exhibited in the form of demonstration) that the mode of formation of the subsequent terms,

each from that which preceded it, must be similar to the formation of the terms which have been already calculated. And when the attempt has been hazarded without the sanction of such general considerations, there are instances on record in which it has led to false results.

It is said that Newton discovered the binomial theorem by induction; by raising a binomial successively to a certain number of powers, and comparing those powers with one another until he detected the relation in which the algebraic formula of each power stands to the exponent of that power, and to the two terms of the binomial. The fact is not improbable but a mathematician like Newton, who seemed to arrive per saltum at principles and conclusions that ordinary mathematicians only reached by a succession of steps, certainly could not have performed the comparison in question without being led by it to the a priori ground of the law; since any one who understands sufficiently the nature of multiplication to venture upon multiplying several lines of symbols at one operation, can not but perceive that in raising a binomial to a power, the co-efficients must depend on the laws of permutation and combination: and as soon as this is recognized, the theorem is demonstrated. Indeed, when once it was seen that the law prevailed in a few of the lower powers, its identity with the law of permutation would at once suggest the considerations which prove it to obtain universally. Even, therefore, such cases these, are but examples of what I have called In

as

duction by parity of reasoning, that is, not really Induction, because not involving inference of a general proposition from particular instances.

§ 3. There remains a third improper use of the term Induction, which it is of real importance to clear up, because the theory of Induction has been, in no ordinary degree, confused by it, and because the confusion is exemplified in the most recent and elaborate treatise on the inductive philosophy which exists in our language. The error in question is that of confounding a mere description, by general terms, of a set of observed phenomena, with an induction from them.

Suppose that a phenomenon consists of parts, and that these parts are only capable of being observed separately, and as it were piecemeal. When the observations have been made, there is a convenience (amounting for many purposes to a necessity) in obtaining a representation of the phenomenon as a whole, by combining, or as we may say, piecing these detached fragments together. A navigator sailing in the midst of the ocean discovers land: he can not at first, or by any one observation, determine whether it is a continent or an island; but he coasts along it, and after a few days finds himself to have sailed completely round it: he then pronounces it an island. Now there was no particular time or place of observation at which he could perceive that this land was entirely surrounded by water he ascertained the fact by a succession of partial observations, and then selected a general expression

which summed up in two or three words the whole of what he so observed. But is there any thing of the nature of an induction in this process? Did he infer any thing that had not been observed, from something else which had ? Certainly not. He had observed the whole of what the proposition asserts. That the land in question is an island, is not an inference from the partial facts which the navigator saw in the course of his circumnavigation; it is the facts themselves; it is a summary of those facts; the description of a complex fact, to which those simpler ones are as the parts of a whole.

Now there is, I conceive, no difference in kind between this simple operation, and that by which Kepler ascertained the nature of the planetary orbits and Kepler's operation, all at least that was characteristic in it, was not more an inductive act than that of our supposed navigator.

The object of Kepler was to determine the real path described by each of the planets, or let us say by the planet Mars (since it was of that body that he first established the two of his three laws which did not require a comparison of planets). To do this there was no other mode than that of direct observation and all which observation could do was to ascertain a great number of the successive places of the planet; or rather, of its apparent places. That the planet occupied successively all these positions, or at all events, positions which produced the same impressions. on the eye, and that it passed from one of these to another insensibly, and without any apparent

« ElőzőTovább »