Oldalképek
PDF
ePub

was twice seen in Brabant, in the year 1575, viz., on the 13th of February and 28th of September. Both appearances were described by Cornelius Gemm, professor of medicine at Louvain, who compares them to spears, fortified cities, and armies fighting in the air. Michael Mæstlin, tutor to Kepler, states that at Backnang in Würtemberg these phenomena, which he styles chasmata, were seen by himself no less than seven times in 1580. In 1581 they again appeared in great splendour in April and September, and in a less degree in some other months of the same year. In September 1621, a similar phenomenon was observed all over France, and described by Gassendi, who gave it the name of aurora borealis; yet neither this, nor any similar appearance posterior to 1574, is described by English writers till the year 1707. From 1621 to 1707, indeed, there is no mention made of an aurora borealis having been seen at all; and, considering the number of astronomers who during that period were continually scanning the heavens, it might almost be supposed that nothing of the kind really made its appearance until after an interval of eighty-six years. A small one was seen in November 1707; and during that and the following year the same appearances were repeated five times. The next on record is that mentioned by Dr Halley in March 1716, which from its brilliancy attracted universal attention, and was considered by the common people as marking the introduction of a foreign race of princes. Since that time these meteors have been much more frequent, and most of our readers must have seen the brilliant displays within the last few years which have been visible over the whole of Europe.

One singular phenomenon which seems to be connected with the aurora is that of a dark bank of cloud below the arches, and usually just above the northern horizon. Although this appears decidedly darker than the uncovered portion of the sky, it is of so thin a character that stars can be seen through it, as well as through the auroral arches and rays, with but little diminution of brightness. It is, however, quite possible that this cloud is only the somewhat misty open sky near the horizon, which appears darker by contrast with the bright arch above it:

It has been repeatedly affirmed that cracking, hissing, or whizzing sounds have been heard proceeding from the polar lights, and the natives of high latitudes are almost unanimous in alleging that this is sometimes the case. Scoresby, Richardson, Franklin, Parry, Hood, and later observers seem to have listened in vain for such noises, and it seems that in the intense cold of the Arctic night the contraction of the ice, or its cleavage under the pressure of approaching tempests, produces sounds exactly such as are described. Still, mere negative evidence must be received with caution, and it is very possible that in high latitudes such sounds may occasionally be heard, since the electric discharge seems to originate near the poles. The aurora, too, seems to vary greatly in height, and in lower latitudes is usually at such an altitude that audible sounds from it are quite impossible. Musschenbroeck says that the Greenland fishers in his time assured him that they had frequently heard noises proceeding from the aurora borealis, and his testimony is confirmed by that of many others. There is no a priori improbability of such sounds being occasionally heard, since a somewhat similar phenomenon accompanies the brush discharge of the electric machine, to which the aurora bears considerable resemblance.

Numerous observers (Nature, iv. 27, 47) have attested the occasional visibility of aurora by daylight. In the Transactions of the Royal Irish Academy, 1788, Dr H. Ussher notices that aurora makes the stars "flutter" very much in the telescope, and states that, having noticed this effect strongly one day at 11 A.M., he examined the sky, and

A

saw an auroral corona with rays to the horizon. J. Glaisher, Franklin, and others, have also observed the phenomenoL. It is scarcely possible that a light so faint as not even to obscure the stars should be visible in sunlight, and such facts would seem to suggest that the auroral light is deve loped in cloud or mist of some sort, which may become visible by reflected light, as well as by its own. Franklin says, "Upon one occasion the aurora was seen immediately after sunset, while bright daylight was still remaining. circumstance to which I attach some importance must not be omitted. Clouds have sometimes been observed during the day to assume the forms of aurora, and I am inclined to connect with these clouds the deviation of the needle, which was occasionally remarked at such times." The writer has seen aurora which could not be distinguished from clouds, till the further development of the display made their real nature evident. Dr Richardson thinks he has observed a polarity in the masses of cloud belonging to a certain kind of cirro-stratus approaching to cirrus, by which their long diameters, having all the same direction, were made to cross the magnetic meridian nearly at right angles. But the apparent convergence of such masses of cloud towards the opposite points of the horizon, which have been so frequently noticed by meteorologists, is an optical deception, produced when they are situated in a plane parallel to that on which the observer stands. These circumstances, says Dr Richardson, are here noticed, because if it shall hereafter be proved that the aurora depends upon the existence of certain clouds, its apparent polarity may, perhaps, with more propriety, be ascribed to the clouds themselves which emit the light; or, in other words, the clouds may assume their peculiar arrangement through the operation of one cause (magnetism, for example), while the emission of light may be produced by another, namely, a change in their internal constitution, perhaps connected with a motion of the electrical fluid. D. Low (Nat., iv. 121) states that he has witnessed as complete a display of auroral motions in the cirrus cloud as he ever beheld in a midnight sky. He thinks that all clouds are subject to magnetic or diamagnetic polarisation, and states that when the lines converge towards the magnetic pole, fine weather follows; when they are at right angles to this position, wet and stormy. The aurora appears in these latitudes usually to occur at a height much greater than that of ordinary clouds. Dr Richardson's observations (Franklin and Richardson's Journey to the Shores of the Polar Sea) seem to show, however, that, in the Arctic regions, the aurora is occasionally seated in a region of the atmosphere below a kind of cloud which is known to possess no great altitude, namely, that modi. fication of cirro-stratus which, descending low in the atmosphere, produces a hazy sheet of cloud over head, or a fogbank in the horizon. Indeed, Dr Richardson is inclined to infer that the aurora borealis is constantly accompanied by, or immediately precedes, the formation of one or other of the forms of cirro-stratus. On the 13th of November and 18th December 1826, at Fort Enterprise, its connection with a cloud intermediate between cirrus and cirrestratus is mentioned; but the most vivid coruscations of the aurora were observed when there were only a few thin attenuated shoots of cirro-stratus floating in the air, or when that cloud was so rare that its existence was only known by the production of a halo round the moon. natives of the Arctic regions of North America pretend to foretell wind by the rapidity of the motions of the aurora; and they say that when it spreads over the sky in a uniform sheet of light, it is followed by fine weather, and that the changes thus indicated are more or less speedy, accordir.g as the appearance of the meteor is early or late in the evening,- —an opinion not improbable, when it is recollected

The

that certain kinds of cirro-stratus are also regarded by | vations on the night of the 6th September 1865:—“A meteorologists as sure indications of rain and wind. Dr stormy cloud was observed about 11 P.M. in the N.N.W., Richardson frequently observed the lower surface of and lightning was distinctly visible in the dark cumulous nebulous masses illuminated by polar lights,--a fact illus- mass. Around this mass extended glories of a phostrative of the comparatively low situation of these aurora. phorescent whiteness, which melted away into the darkness Biot, also, in the island of Unst, observed many auroræ of the starry sky. Round the cloud was a single and uninthat could not be higher than the region of clouds. Sir terrupted corona, and outside this, two fainter corona John Franklin in like manner observed low aurora "The broken by rifts which corresponded with each other. important fact," says he, "of the existence of the aurora After the cloud had sunk below the horizon the glories at a less elevation than that of dense clouds was evinced were still visible. The light could not have been due to on two or three occasions this night (13th February 1821, the moon or any foreign cause. The rays showed great at Fort Enterprise), and particularly at 11 hours 50 min., mobility, and a sort of vibration intermediate between when a brilliant mass of light, variegated with the prismatic that of the aurora and the brush discharge' of the electric colours, passed between a uniform steady dense cloud and machine." He goes on to say that— the earth, and in its progress completely concealed that portion of the cloud which the stream of light covered, until the coruscation had passed over it, when the cloud appeared as before." Captain Parry, as stated in his third voyage, observed aurora near to the earth's surface. It is said that while Lieutenants Scherer and Ross and Captain Parry were admiring the extreme beauty of a polar light, they all simultaneously uttered an exclamation of surprise at seeing a bright ray of the aurora shoot suddenly downward from the general mass of light, and between them and the land, which was only 3000 yards distant The ray or beam of the polar light thus passed within a distance of 3000 yards, or less than 2 miles, of them. Further, Mr Farquharson observed in Aberdeenshire an aurora borealis

not more than 4000 feet above the level of the sea. Fitzroy believed that aurora in northern latitudes indicates and accompanies stormy weather at a distance, and that straining and cracking of the ice may cause the hissing and whizzing sounds.

M. Silbermann (Comptes Rendus, lxviii. p. 1051) notes facts which strongly confirm the connection of aurora with some form of cirrus cloud He says (of the aurora of 15th April 1869)," At 11 hours 16 min. the phenomenor disappeared in a singular fashion. It appeared as if the columns of the aurora were still visible, but the stars were hidden, and it soon became obvious that fan-like cirrus clouds, with their point of divergence in the north, had taken the place of the aurora Between 1 and 2 in the morning these clouds had passed the zenith, and let fall a very fine rain. On stretching out the back of the hand one felt a pricking of cold, and now and then there were minute scintillations in the nearest strata of air, like a hail of tiny crystals of ice, which afterwards turned to a rain of larger and larger drops. At 4 o'clock in the morning the cirrus of the false aurora was still visible, but deformed towards the top, and presenting a flaky aspect. One interesting point is, that the cirrus never appeared to replace the aurora either from the right or the left, but to substitute itself for it, like the slow changes of a dioramic view." "I had previously observed a fall of small ice crystals on the 30th April 1865. At 6 P.M. Paris seemed enveloped in a cirrus of vertical fibres, recalling those of amianthus, and more or less wavy. It was a rain of little sparkling prisms. At the same time I heard a rustling or crepitation, and on extending my hand I felt a pricking sensation of cold, and distinguished the crystals which fell and melted immediately."

In a later memoir (Ibid., p. 1120) he remarks that many storm-clouds throw out tufts of cirri from their tops, which extend over a great portion of the sky, and resolve themselves into a very fine and cold drizzle, which frequently degenerates into a warmer and more abundant rain. Usually the fibres are more or less sinuous, but in much rarer cases they become perfectly rectilinear, and surround the cloud like a glory, and occasionally shine with a sort of phosphorescence, As an illustration he quotes his obser

"Luminous clouds have been frequently observed. There are many examples in Gilbert's Annals, and we may recall also the observations of Becaria, Deluc, the Abbé Rozier, Nicholson, and Colla. Mists also are occasionally luminous, as, for instance, that observed by Dr Verdeil at Lausanne in 1753, and by Dr Robinson in Ireland."

A still more curious fact is mentioned by Sabine, who, during his magnetic survey, anchored some days at Loch Scavaig in Skye. This loch is surrounded by high and bare mountains, one of which was nearly always enveloped in a cloud, resulting from the vapours which almost constant west winds brought from the Atlantic. This cloud at nights was permanently self-luminous, and Sabine frequently saw rays similar to those of the aurora. He entirely repudiates the idea that the rays could be due to aurore beyond the mountain, and is sure that these phenomena, whatever their nature, were produced in the cloud itself.

Silbermann asserts that aurora are preceded by the same general phenomena as thunderstorms, and concludes that everything had happened as if the aurora of 1859 and 1869 had been storm-clouds, which, instead of bursting in thunder, had been drawn into the upper parts of the atmosphere, and their vapour being crystallised in tiny prisms by the intense cold, the electricity had become luminous in flowing over these icy particles. This view is very strongly supported by the observation of Professor Piazzi Smyth that the monthly frequency of aurora varies inversely with that of thunderstorms. The following are his numbers of relative frequency, the means of all observations of the Scottish Meteorological Society prior to 1871 :

[blocks in formation]

It must, however, be remembered that the observed frequency of aurora is much affected in Scotland by the continuous twilight during the summer months. If there be this connection between thunder-clouds and aurore, it is not improbable that the "dark segment" is sometimes a real cloud or mist, situated at a height where the density of the air is too great for luminous discharge; and in several cases Silbermann has seen auroral rays rise from small clouds, which gradually melted entirely away, or left a small non-luminous nucleus when their electricity was discharged.

If, as would certainly be the case in a mist, any portion

of the auroral light is reflected, whether it be its own or derived from some other body, it should be polarised; but so far polariscope observations are deficient, and give no certain information. It is difficult to separate the proper polarisation of the aurora from the mere atmospheric polarisation of the sky. Mr Ranyard, who appears to have used a double-imaged prism and Savart during the great aurora of Feb. 4, 1872, and also to have made some observations on that of Nov. 11, 1871, did not detect polarisation. On the other hand, Prof. Stephen Alexander, in his report on his expedition to Labrador (App. 21, U. S. Coast Survey Rep., 1860), found strong polarisation with a Savart, and, singularly enough, thought it strongest in the dark parts of the aurora. The observations were made in lat. about 60°, in the beginning of July, and near midnight, but he does not state whether there was twilight or any trace of air polarisation at the time, nor does he give the plane of polarisation. With regard to the height of aurora, Sir W. R. Grove (Nature, vol. iii. p. 28) states that he saw an aurora some years ago at Chester in which the rays came between him and the houses; and Mr Ledd observed a similar case in which the lighthouse at Margate was visible through a ray. The evidence, however, appears strong that aurora is usually at a very great height. Dalton calculated the height of an auroral arch, which was seen as far north as Edinburgh, and as far south as Doncaster, and at most intermediate places, from its apparent aititude, as measured by its position in relation to the stars as seen from Kendal and Warrington, 83 miles apart. The resulting height was about 100 miles, and the position slightly south of Kendal. An observation at Jedburgh confirmed this, but some taken at Edinburgh placed it above Carlisle at a height of 150 miles. Dalton, however, considered the former reckoning the more trustworthy. Backhouse has made many calculations, and considers that the average height of aurora ranges from 50 to 100 miles, and numerous other observers have calculated similar heights. All these observations, however, are liable to the objection, that different observers may really have seen different arches, of which, as has been remarked, there are often several concentric ones. It is not likely that this was really the case in most instances, but it has, no doubt, sometimes occurred, and may account for the heights of 500 to 1000 miles calculated by early observers. This difficulty is met by a method proposed by Frof. H. A. Newton (Sill. Jour. of Sc., 2d ser. vol. xxxix. p. 286) for calculating the height by one observation of altitude and amplitude of an arch. It seems almost certain that the auroral arches are arcs of circles, of which the centre is the magnetic axis of the earth; or, at least, that they are nearly parallel to the earth's surface, and probably also to the narrow belt or ring surrounding the magnetic and astronomical poles, and passing through Faroe, the North Cape, and the north of Nova Zembla, which Loomis and Fritz have found to be the region of most frequent aurora. This being assumed, Prof. Newton finds that, d being the distance from the observer to the centre of curvature of the nearest part of this belt (which for England is situated about 75° N. lat,, 50° W. long.), h the apparent altitude of the arch, 2a its amplitude on the horizon, x its height, R the earth's radius, and c the distance of the observer from the ends of the arch,

[merged small][merged small][merged small][merged small][ocr errors]

calculated by other methods. It cannot well be objected that such altitudes are beyond the limits of our atmosphere, since Prof. A. S. Herschel (Nature, vol. iv. 504) gives the height of twenty meteors varying from 40 to 118 miles, with an average of about 70 miles, and it is almost certain that these bodies are rendered incandescent by atmospheric friction. Assuming 0° C. as the temperature at the earth's surface, and the absolute zero. - 273' C.. as a minimum for the auroral region, the pressure would be about 0.2 millimetre (0.0078 inch) at a height of 100 kilometres (62 miles) above the earth's surface. This result, of course, assumes a good deal; but if correct, it implies. a vacuum attainable with difficulty even with the Sprengel pump. The pressure may, however, be much greater in the path of the auroral beams, since, as Prof. A. S. Herschel suggests, electrical repulsion inay carry air or other matter up to a great height. A similar effect is observed in the so-called vacuum tubes, in which the pressure becomes much greater in the narrow central part, while the discharge is passing. It is found that the apparent altitude of the auroral corona is always a little less than that indicated by the dipping needle, owing to the curvature of the lines of magnetic force, or, in other words, because its altitude corresponds with the inclination of the parallel of latitude over which it is actually situated; and Galle has suggested (Pogg. Ann., cxlvi. 133), that from this divergence the height may be calculated, and, indeed, gives a series of heights so determined, which do not differ materially from Prof. Newton's. It is, however, doubtful if the position of these coronæ, and consequently the value of the small angle (not more than 4° or 5°), admit of sufficiently accurate determination for such a use.

Early observers, and especially Mr Canton, conjectured that the aurora was an electric discharge in the rarefied upper atmosphere, and the resemblance between it and the phenomena exhibited by discharges in an air-pump vacuum confirmed the idea. Recent spectroscopic observations have thrown some little doubt on this conclusion, or at least have shown that there is still a mystery left unexplained. When the light of any glowing gas is analysed by the prism, it is found to consist of a series of coloured lines and bands, of which the number and position is dependent on the nature of the gas, and which is called its spectrum. The light of the aurora gives a spectrum usually consisting of a single line in the greenish yellow, which does not coincide with a principal line of any known substance, -a spectrum totally different from those of the gases of the atmosphere. Besides this line there is occasionally visible a sharp line in the red, and several fainter and more refrangible bands. The following tabie includes most of the principal determinations of the auroral lines, which have hitherto been published :—

[blocks in formation]
[ocr errors]
[blocks in formation]

Vogel

+2 ±0.92

5570

Winlock

[blocks in formation]

He gives the heights of twenty-eight aurora calculated by this method, ranging from 33 to 281 miles, with a mean of 130 miles. The method, of course, rests on the assumption that auroral arches are arcs of circles, but it is decidedly confirmatory both of this assumption and of the heights

5570

N. German Polar

Peirce Respighi

Expedition

5573

5579

5600

C. Piazzi Smyth Ellery

[blocks in formation]

Vogel remarks that the line at 5569, which is often the only one visible, as well as the faint band at 4667, become noticeably fainter when the red line is visible, while under the same circumstances that near 5189, as well as the red line, is very brilliant. This fact, which has also been noted by other observers, makes it almost certain that the auroral spectrum is not a simple one, but is derived either from two or more sources, or from the same source under very varying conditions. Angström says (Nature, x. 211)—

"It may be assumed that the spectrum of the aurora is composed of two different spectra, which, even although appearing sometimes simultaneously, have 'in all probability different origins. The one spectrum consists of the homogeneous yellow light which is so characteristic of the aurora, and which is found even in its weakest manifestation. The other spectrum consists of extremely feeble bands of light, which only in the stronger aurora attain such intensity as enables one to fix their position even approximately. As to the yellow line in the aurora, or the one-coloured spectrum, we are as little able now as when it was first observed to point out a corresponding line in any known spectrum. True, Piazzi Smyth (Comptes Rendus, lxxiv. 597) has asserted that it-corresponds to one of the bands in the spectrum of hydrocarbons; but a more exact observation shows that the line falls into a group of shaded bands, which belong to the spectrum, but almost midway between the second and third. Herr Vogel has observed that this line corresponds to a band in the spectrum of rarefied air (Pogg. Ann., cxlvi. 582). This is quite true, but in Angström's opinion is founded on a pure misconception. The spectrum of rarefied air has in the yellow-green part seven bands of nearly equal strength, and that the auroral line corresponds with the margin of one of these bands, which is not even the strongest, cannot be anything else than merely accidental." Angström's own view is that this line is due to fluorescence or phosphorescence, and he remarks that "since fluorescence is produced by the ultra-violet rays, an electric discharge may easily be imagined, which though in itself

of feeble light, may be rich in ultra-violet rays, and therefore in a condition to cause a sufficiently strong fluorescence. It is also known that oxygen is phosphorescent, as also several of its compounds." We are, however, just as ignorant of any body which would give such a light by phosphorescence or fluorescence as by ignition, and it seems more probable that the light may be due to chemical action. It is assumed by Angström that water vapour is necessarily absent in the higher atmosphere on account of the cold, but when we remember that its molecular weight is lighter than that of oxygen in the proportion of 9 to 16, it is not unlikely that it may attain great elevations under the very low tensions that prevail at such heights, and it is possible also that both it and other bodies may, by electric repulsion in the auroral beams, be carried up much above the level which they would attain by gravity. If, then, electric discharges take place between the small sensible particles of water or ice in the form of mist or cirrus, as Silbermann has shown to be likely, surface decomposition would ensue, and it is highly probable that the nascent gases would combine with emission of light. It has been almost proved in the case of hydrogen phosphide that the very characteristic spectrum produced by its combustion is due neither to the elements nor to the products of combustion, but to some peculiar action at the instant of combination, and it is quite possible that, under such circumstances as above described, water might also give an entirely fresh spectrum.

It is, perhaps, proper to mention that H. R. Procter found an apparent coincidence by often repeated direct comparison with a band frequently seen both in air and oxygen tubes, which he eventually succeeded in tracing with tolerable certainty to some form of hydrocarbon. The comparison spectroscopes were only of low dispersion, but on more accurate measurement of the carbon band it was fourd that, though more refrangible than the first band of citron acetylene (candle-flame), it was still less so than careful measurement assigns to the aurora. In addition, the band was shaded towards the violet, which is not the case with that of the aurora, though with feeble light it seemed like a line.

If, leaving the citron line, we pass on to the feeble spectrum towards the violet, we shall obtain more hopeful coincidences. Angström thinks that three of the bands correspond with the three brightest bands of the violet aurora of the negative pole in rarefied air, and has tried to reproduce the conditions of the aurora on a small scale. He says

phosphoric anhydride, the platinum wires are introduced, and the "Into a flask, the bottom of which is coverea with a layer of air is pumped out to a tension of only a few millimetres. If the inductive current of a Ruhmkorff coil be then sent through the flask, the whole flask will be filled, as it were, with the violet light, which otherwise proceeds only from the negative pole, and from both electrodes a spectrum is obtained consisting chiefly of shaded violet bands. If this spectrum be compared with that of the aurora, Angström thinks the agreement between the former and some of the best established bands of the latter is satisfactory.

[merged small][merged small][merged small][merged small][ocr errors][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

by Angstrom and others. Finally, should the aurora be observed as it appears at a less height in the atmosphere, then are recognised both the hydrogen lines and also the strongest of the bands of the dark-banded air-spectrum. There are found also again nearly all the lines and light-bands of the weak aurora spectrum whose position has with any certainty been observed."

With regard to the red line, which is sometimes perfectly sharp and well defined, and occasionally, though very rarely, even as bright as the citron line, scarcely even a plausible theory has been hazarded. That it is not the C line of hydrogen is certain, as they have been directly compared, and are widely separated; and none of the air lines near its position are at all comparable to it in brightness. Vogel thinks it may "correspond with the first system of lines in the spectrum of nitrogen (6620 to 6213), and that probably only the bright part of this group of lines is visible on account of the extreme faintness of the aurore. This, however, cannot be the case, since the present writer has seen it both bright and sharp. Vogel points out that the line near 5189 closely corresponds to an oxygen line of that wave-length which is bright and constant under very different conditions of pressure and temperature. He states that the faint line near 5390 corresponds in like manner to a nitrogen line. He points out that, though the correspondences with the iron lines are very striking, but little weight can be laid on the fact, since many of the brightest lines of the iron spectrum do not appear. The following table gives the principal iron lines (Thalén) and the auroral ones; and it will be seen that the former are so abundant that coincidences could scarcely fail:

-

[merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small]

5586 10.

5268

10

8

5266

8

5375 5572 10 5569 8 5569 5545 10

5232 10

4984

8 4323 4415 10 4667

4325 10 4307 10 4299 4271 10 5226 10 5214 4251 10 5192 8 4250 10

Angstrom asserted some years since that he had detected the principal line of the aurora in the spectrum of the zodiacal light, but he appears to have been misled by a faint aurora, for more recent observers, and notably Prof. C. Piazzi Smyth, Mr Backhouse, and A W. Wright (Sill. Jour. of Sc., viii. 39), have found that the spectrum of the zodiacal light is continuous and quite analogous to that of twilight or faint starshine, and polariscope observations prove that it is mostly reflected. The very faint line positioned by Alvan Clark at 5320 has been said by Winlock to coincide with the principal coronal line 5322. The position of the auroral line is uncertain; and even if it were accurate, a single doubtful coincidence with a faint line is not the least proof of identity.

We have already remarked the manifest relation between the forms and position of aurora and the earth's lines of magnetic force, and in addition to this have noted the disturbance of the magnetic needle during auroral displays. It is not, however, at such times only that the magnetic elements are subject to variation; the total force, declination, and inclination, all are constantly varying both regularly with the hours of the day and the seasons of the year, and irregularly at uncertain times. The irregular

oscillations when violent are called magnetic storms, and it must be noted that auroral display never takes place except during such disturbances, although a large proportion of the most remarkable magnetic storms are unaccompanied by visible aurora.

Franklin, who was one of the first observers of this

aurora.

relation (at Fort Enterprise, 64° 30′ N., 113° 10′ W.), says of the magnetic needle,- "The motion communicated to it was neither sudden nor vibratory. Sometimes it was simultaneous with the formation of arches, prolongation of beams, or certain other changes of form or action of the But generally the effect of these phenomena upon the needle was not visible immediately, but in about half an hour or an hour the needle had attained its maximum of deviation. From this its return to its former position was very gradual, seldom regaining it before the following morning, and frequently not until the afternoon, unless it was expedited by another arch of the aurora operating in a direction different from the former one."

"The arches of the aurora," he adds, "most commonly traverse the sky nearly at right angles to the magnetic meridion, but deviations from this direction, as has already been stated, were not rare; and I am inclined to consider that these different positions of the aurora have considerable influence on the direction of the needle. When an arch was nearly at right angles to the magnetic meridian, the motica of the needle was towards the west. This westward motion was still greater when one extremity of the arch bore 301, or about 59° to the west of the magnetic north, that is, when the extremity of the arch approached from the west towards the magnetio north. A westerly motion also took place when the extremity of an arch was in the true north, or about 36° to the west of the magnetic north, but not in so great a degree as when its bearing was about 301. A contrary effect was produced when the same end of an arch originated to the southward of the magnetic west, viz., when it bore from 245° to 234°, and of course when its opposite extremity approached nearer to the magnetic north. In these cases the motion of the needle was towards the east. In one case only a complete arch was formed in the magnetic meridian, in another the beam shot up from the magnetic north to the zenith; and in both these cases the needle moved towards the west.

"The needle was most disturbed on February 13th, P.M., at a time when the aurora was most distinctly seen passing between a stratum of clouds and the earth, or at least illuminating the face of the clouds opposed to the observer. This and several other appear.

ances induced me to infer that the distance of the aurora from the earth varied on different nights, and produced a proportionate effect on the needle. When the light shone through a dense hazy atmo. sphere, when there was a halo round the moon, or when a small snow was falling, the disturbance was generally considerable; and on certain hazy, cloudy nights the needle frequently deviated in a considerable degree, although the aurora was not visible at the time. Our observations do not enable us to decide whether this ought to be attributed to an aurora concealed by a cloud or haze, or entirely to the state of the atmosphere. Similar deviations have been observed in the day-time, both in a clear and cloudy state of the

sky, but more frequently in the latter case. An aurora sometimes approached the zenith without producing any change in the position of the needle, as was more generally the case; whilst at other times a considerable alteration took place although the beams or arches did not come near the zenith. The aurora was frequently seen without producing any perceptible effect on the needle. At such times its appearance was that of an arch, or an horizontal stream of dense yellowish light, with little or no internal motion. The disturbance in the needle was not always proportionate to the agitation of the aurora, but it was always greater when the quick motion and vivid light were observed to take place in a hazy atmosphere. In a few instances the motion of the needle was observed to commence at the instant a beam darted upwards from the horizon; and its former position was more quickly or slowly regained according to circumstances. If an arch was forined immediately afterwards, having its extremities placed on opposite sides of the magnetic north and south to the former one, the return of the needle was more speedy, and it generally went beyond the point from whence it first started."

Speaking of the aurora of May 13, 1869, M. Lamont of Munich says (Comptes Rendus, lxviii. 1201)

"1. During 40 years I have only seen seven or eight aurora at

Munich, and this small number is insufficient for a study of the characters of the phenomenon.

"2. Aurora, whether visible at Munich or not, are always accompanied by magnetic perturbations.

.

« ElőzőTovább »